68.15.23 problem 23

Internal problem ID [17749]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 23
Date solved : Thursday, October 02, 2025 at 02:27:38 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+y&=\frac {1}{x^{2}} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 20
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+y(x) = 1/x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (\ln \left (x \right )\right ) c_2 +\cos \left (\ln \left (x \right )\right ) c_1 +\frac {1}{5 x^{2}} \]
Mathematica. Time used: 0.044 (sec). Leaf size: 59
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+y[x]==1/x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos (\log (x)) \int _1^x-\frac {\sin (\log (K[1]))}{K[1]^3}dK[1]+\sin (\log (x)) \int _1^x\frac {\cos (\log (K[2]))}{K[2]^3}dK[2]+c_1 \cos (\log (x))+c_2 \sin (\log (x)) \end{align*}
Sympy. Time used: 0.216 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + y(x) - 1/x**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (\log {\left (x \right )} \right )} + C_{2} \cos {\left (\log {\left (x \right )} \right )} + \frac {1}{5 x^{2}} \]