Internal
problem
ID
[17752]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.7,
page
195
Problem
number
:
26
Date
solved
:
Thursday, October 02, 2025 at 02:27:42 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-16*y(x) = ln(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-16*y[x]==Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - 16*y(x) - log(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)