Internal
problem
ID
[17786]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.7,
page
195
Problem
number
:
60
Date
solved
:
Thursday, October 02, 2025 at 02:28:15 PM
CAS
classification
:
[[_Emden, _Fowler]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; ic:=[y(-1) = 0, D(y)(-1) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; ic={y[-1]==0,Derivative[1][y][-1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + y(x),0) ics = {y(-1): 0, Subs(Derivative(y(x), x), x, -1): 1} dsolve(ode,func=y(x),ics=ics)