Internal
problem
ID
[17788]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.7,
page
195
Problem
number
:
64
(b)
Date
solved
:
Thursday, October 02, 2025 at 02:28:16 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+5*x^3*diff(diff(diff(y(x),x),x),x)-12*x^2*diff(diff(y(x),x),x)-12*x*diff(y(x),x)+48*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,4}]+5*x^3*D[y[x],{x,3}]-12*x^2*D[y[x],{x,2}]-12*x*D[y[x],x]+48*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 5*x**3*Derivative(y(x), (x, 3)) - 12*x**2*Derivative(y(x), (x, 2)) - 12*x*Derivative(y(x), x) + 48*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)