Internal
problem
ID
[17792]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.7,
page
195
Problem
number
:
65
Date
solved
:
Thursday, October 02, 2025 at 02:28:17 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^3*diff(diff(diff(y(x),x),x),x)+9*x^2*diff(diff(y(x),x),x)+44*x*diff(y(x),x)+58*y(x) = 0; ic:=[y(1) = 2, D(y)(1) = 10, (D@@2)(y)(1) = -2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+9*x^2*D[y[x],{x,2}]+44*x*D[y[x],x]+58*y[x]==0; ic={y[1]==2,Derivative[1][y][1]==10,Derivative[2][y][1]==-2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 9*x**2*Derivative(y(x), (x, 2)) + 44*x*Derivative(y(x), x) + 58*y(x),0) ics = {y(1): 2, Subs(Derivative(y(x), x), x, 1): 10, Subs(Derivative(y(x), (x, 2)), x, 1): -2} dsolve(ode,func=y(x),ics=ics)