68.16.8 problem 8

Internal problem ID [17801]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.8, page 203
Problem number : 8
Date solved : Thursday, October 02, 2025 at 02:28:22 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 47
Order:=6; 
ode:=(-2-2*x)*diff(diff(y(x),x),x)+2*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+x^{2}+\frac {1}{6} x^{4}-\frac {1}{15} x^{5}\right ) y \left (0\right )+\left (x +\frac {1}{2} x^{2}+\frac {1}{3} x^{3}+\frac {1}{30} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 52
ode=(-2-2*x)*D[y[x],{x,2}]+2*D[y[x],x]+4*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{15}+\frac {x^4}{6}+x^2+1\right )+c_2 \left (\frac {x^5}{30}+\frac {x^3}{3}+\frac {x^2}{2}+x\right ) \]
Sympy. Time used: 0.268 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-2*x - 2)*Derivative(y(x), (x, 2)) + 4*y(x) + 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{6} + x^{2} + 1\right ) + C_{1} x \left (\frac {x^{2}}{3} + \frac {x}{2} + 1\right ) + O\left (x^{6}\right ) \]