Internal
problem
ID
[17831]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.9,
page
215
Problem
number
:
13
Date
solved
:
Thursday, October 02, 2025 at 02:28:40 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=diff(diff(y(x),x),x)+(1/2/x-2)*diff(y(x),x)-35/16/x^2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=D[y[x],{x,2}]+(1/2*1/x-2)*D[y[x],x]-35/16*1/x^2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2 + 1/(2*x))*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 35*y(x)/(16*x**2),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)