68.17.26 problem 27 (b)

Internal problem ID [17844]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.9, page 215
Problem number : 27 (b)
Date solved : Thursday, October 02, 2025 at 02:28:49 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (16 x^{2}-25\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.024 (sec). Leaf size: 35
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(16*x^2-25)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{5} \left (1-\frac {2}{3} x^{2}+\frac {4}{21} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (-1316818944000-1316818944000 x^{2}-877879296000 x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x^{5}} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 42
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(16*x^2-25)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {1}{x^5}+\frac {1}{x^3}+\frac {2}{3 x}\right )+c_2 \left (\frac {4 x^9}{21}-\frac {2 x^7}{3}+x^5\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (16*x**2 - 25)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : Expected Expr or iterable but got None