Internal
problem
ID
[17861]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Chapter
4
review
exercises,
page
219
Problem
number
:
23
Date
solved
:
Thursday, October 02, 2025 at 02:28:57 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
ode:=9*diff(diff(diff(y(x),x),x),x)+12*diff(diff(y(x),x),x)+13*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=9*D[y[x],{x,3}]+12*D[y[x],{x,2}]+13*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(13*Derivative(y(x), x) + 12*Derivative(y(x), (x, 2)) + 9*Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)