Internal
problem
ID
[17873]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Chapter
4
review
exercises,
page
219
Problem
number
:
35
Date
solved
:
Thursday, October 02, 2025 at 02:29:05 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(t),t),t),t)-12*diff(y(t),t)-16*y(t) = exp(4*t)-exp(-2*t); dsolve(ode,y(t), singsol=all);
ode=D[ y[t],{t,3}]-12*D[y[t],t]-16*y[t]==Exp[4*t]-Exp[-2*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-16*y(t) - exp(4*t) - 12*Derivative(y(t), t) + Derivative(y(t), (t, 3)) + exp(-2*t),0) ics = {} dsolve(ode,func=y(t),ics=ics)