Internal
problem
ID
[17875]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Chapter
4
review
exercises,
page
219
Problem
number
:
37
Date
solved
:
Thursday, October 02, 2025 at 02:29:07 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=diff(diff(diff(diff(y(t),t),t),t),t)+4*diff(diff(diff(y(t),t),t),t)+14*diff(diff(y(t),t),t)+20*diff(y(t),t)+25*y(t) = t^2; dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,4}]+4*D[ y[t],{t,3}]+14*D[y[t],{t,2}]+20*D[y[t],t]+25*y[t]==t^2; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t**2 + 25*y(t) + 20*Derivative(y(t), t) + 14*Derivative(y(t), (t, 2)) + 4*Derivative(y(t), (t, 3)) + Derivative(y(t), (t, 4)),0) ics = {} dsolve(ode,func=y(t),ics=ics)