68.18.34 problem 40

Internal problem ID [17878]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 40
Date solved : Thursday, October 02, 2025 at 02:29:08 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+16 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=-8 \\ \end{align*}
Maple. Time used: 0.039 (sec). Leaf size: 10
ode:=diff(diff(y(t),t),t)+16*y(t) = 0; 
ic:=[y(0) = 0, D(y)(0) = -8]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = -2 \sin \left (4 t \right ) \]
Mathematica. Time used: 0.009 (sec). Leaf size: 11
ode=D[y[t],{t,2}]+16*y[t]==0; 
ic={y[0]==0,Derivative[1][y][0] ==-8}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -2 \sin (4 t) \end{align*}
Sympy. Time used: 0.035 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(16*y(t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): -8} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - 2 \sin {\left (4 t \right )} \]