68.18.42 problem 48

Internal problem ID [17886]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 48
Date solved : Thursday, October 02, 2025 at 02:29:15 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=\frac {{\mathrm e}^{4 t}}{t^{3}} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 19
ode:=diff(diff(y(t),t),t)-8*diff(y(t),t)+16*y(t) = 1/t^3*exp(4*t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = {\mathrm e}^{4 t} \left (c_2 +t c_1 +\frac {1}{2 t}\right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 31
ode=D[y[t],{t,2}]-8*D[y[t],t]+16*y[t]==1/t^3*Exp[4*t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {e^{4 t} \left (2 c_2 t^2+2 c_1 t+1\right )}{2 t} \end{align*}
Sympy. Time used: 0.171 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(16*y(t) - 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - exp(4*t)/t**3,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} + C_{2} t + \frac {1}{2 t}\right ) e^{4 t} \]