Internal
problem
ID
[17900]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Chapter
4
review
exercises,
page
219
Problem
number
:
62
Date
solved
:
Thursday, October 02, 2025 at 02:29:25 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-7*x*diff(y(x),x)+15*y(x) = 8*x; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-7*x*D[y[x],x]+15*y[x]==8*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 7*x*Derivative(y(x), x) - 8*x + 15*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)