68.21.8 problem 22 (a)

Internal problem ID [17933]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 5. Applications of Higher Order Equations. Exercises 5.3, page 249
Problem number : 22 (a)
Date solved : Thursday, October 02, 2025 at 02:30:04 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{\prime \prime }+x&=\cos \left (\frac {7 t}{10}\right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=0 \\ x^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.040 (sec). Leaf size: 17
ode:=diff(diff(x(t),t),t)+x(t) = cos(7/10*t); 
ic:=[x(0) = 0, D(x)(0) = 1]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = \sin \left (t \right )-\frac {100 \cos \left (t \right )}{51}+\frac {100 \cos \left (\frac {7 t}{10}\right )}{51} \]
Mathematica. Time used: 0.079 (sec). Leaf size: 96
ode=D[x[t],{t,2}]+x[t]==Cos[7/10*t]; 
ic={x[0]==0,Derivative[1][x][0 ]==1}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \sin (t) \left (-\int _1^0\cos \left (\frac {7 K[2]}{10}\right ) \cos (K[2])dK[2]\right )+\sin (t) \int _1^t\cos \left (\frac {7 K[2]}{10}\right ) \cos (K[2])dK[2]-\cos (t) \int _1^0-\cos \left (\frac {7 K[1]}{10}\right ) \sin (K[1])dK[1]+\cos (t) \int _1^t-\cos \left (\frac {7 K[1]}{10}\right ) \sin (K[1])dK[1]+\sin (t) \end{align*}
Sympy. Time used: 0.048 (sec). Leaf size: 22
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(x(t) - cos(7*t/10) + Derivative(x(t), (t, 2)),0) 
ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 1} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \sin {\left (t \right )} + \frac {100 \cos {\left (\frac {7 t}{10} \right )}}{51} - \frac {100 \cos {\left (t \right )}}{51} \]