69.1.1 problem 2

Internal problem ID [17951]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 1. Basic concepts and definitions. Exercises page 18
Problem number : 2
Date solved : Thursday, October 02, 2025 at 02:30:14 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=x^{2}+y^{2} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 43
ode:=diff(y(x),x) = x^2+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x \left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) c_1 +\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )\right )}{c_1 \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \]
Mathematica. Time used: 0.085 (sec). Leaf size: 169
ode=D[y[x],x]==x^2+y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^2 \left (-2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {x^2}{2}\right )+c_1 \left (\operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )-\operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )\right )\right )-c_1 \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )}{2 x \left (\operatorname {BesselJ}\left (\frac {1}{4},\frac {x^2}{2}\right )+c_1 \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )}\\ y(x)&\to -\frac {x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )-x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )}{2 x \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list