69.1.7 problem 8

Internal problem ID [17957]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 1. Basic concepts and definitions. Exercises page 18
Problem number : 8
Date solved : Thursday, October 02, 2025 at 02:31:20 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {1+y}{x -y} \end{align*}
Maple. Time used: 0.017 (sec). Leaf size: 24
ode:=diff(y(x),x) = (1+y(x))/(x-y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-x -1}{\operatorname {LambertW}\left (-\left (x +1\right ) {\mathrm e}^{-c_1}\right )}-1 \]
Mathematica. Time used: 0.066 (sec). Leaf size: 35
ode=D[y[x],x]==(y[x]+1)/(x-y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [x=(y(x)+1) \left (\frac {y(x)}{y(x)+1}-\log (y(x)+1)\right )+c_1 (y(x)+1),y(x)\right ] \]
Sympy. Time used: 0.579 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (y(x) + 1)/(x - y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{C_{1} + W\left (\left (- x - 1\right ) e^{- C_{1}}\right )} - 1 \]