69.2.3 problem 23

Internal problem ID [17967]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 2. The method of isoclines. Exercises page 27
Problem number : 23
Date solved : Thursday, October 02, 2025 at 02:31:37 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&=y-x \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 11
ode:=diff(y(x),x) = y(x)-x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x +1+{\mathrm e}^{x} c_1 \]
Mathematica. Time used: 0.021 (sec). Leaf size: 29
ode=D[y[x],x]==y[x]-x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x \left (\int _1^x-e^{-K[1]} K[1]dK[1]+c_1\right ) \end{align*}
Sympy. Time used: 0.059 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x - y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{x} + x + 1 \]