69.2.14 problem 34

Internal problem ID [17978]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 2. The method of isoclines. Exercises page 27
Problem number : 34
Date solved : Thursday, October 02, 2025 at 02:31:54 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&=2 x -y \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=diff(y(x),x) = 2*x-y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = 2 x -2+{\mathrm e}^{-x} c_1 \]
Mathematica. Time used: 0.018 (sec). Leaf size: 18
ode=D[y[x],x]==2*x-y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 2 x+c_1 e^{-x}-2 \end{align*}
Sympy. Time used: 0.063 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x + y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + 2 x - 2 \]