69.3.1 problem 41

Internal problem ID [17985]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 3. The method of successive approximation. Exercises page 31
Problem number : 41
Date solved : Thursday, October 02, 2025 at 02:32:00 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=x^{2}-y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (-1\right )&=0 \\ \end{align*}
Maple. Time used: 0.177 (sec). Leaf size: 55
ode:=diff(y(x),x) = x^2-y(x)^2; 
ic:=[y(-1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {x \left (\operatorname {BesselI}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselK}\left (\frac {3}{4}, \frac {1}{2}\right )-\operatorname {BesselK}\left (\frac {3}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {1}{2}\right )\right )}{\operatorname {BesselK}\left (\frac {3}{4}, \frac {1}{2}\right ) \operatorname {BesselI}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )+\operatorname {BesselK}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \operatorname {BesselI}\left (-\frac {3}{4}, \frac {1}{2}\right )} \]
Mathematica. Time used: 0.081 (sec). Leaf size: 211
ode=D[y[x],x]==x^2-y[x]^2; 
ic={y[-1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {i \left (x^2 \left (-\operatorname {BesselJ}\left (-\frac {5}{4},\frac {i}{2}\right )+i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i}{2}\right )+\operatorname {BesselJ}\left (\frac {3}{4},\frac {i}{2}\right )\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i x^2}{2}\right )+x^2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i}{2}\right ) \operatorname {BesselJ}\left (-\frac {5}{4},\frac {i x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {3}{4},\frac {i}{2}\right ) \left (x^2 \left (-\operatorname {BesselJ}\left (\frac {3}{4},\frac {i x^2}{2}\right )\right )-i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )\right )\right )}{x \left (2 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {i}{2}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i x^2}{2}\right )+\left (-\operatorname {BesselJ}\left (-\frac {5}{4},\frac {i}{2}\right )+i \operatorname {BesselJ}\left (-\frac {1}{4},\frac {i}{2}\right )+\operatorname {BesselJ}\left (\frac {3}{4},\frac {i}{2}\right )\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {i x^2}{2}\right )\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + y(x)**2 + Derivative(y(x), x),0) 
ics = {y(-1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list