Internal
problem
ID
[17987]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
3.
The
method
of
successive
approximation.
Exercises
page
31
Problem
number
:
43
Date
solved
:
Thursday, October 02, 2025 at 02:32:23 PM
CAS
classification
:
[[_linear, `class A`]]
With initial conditions
ode:=diff(y(x),x) = x+y(x); ic:=[y(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x]==x+y[x]; ic={y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x - y(x) + Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)