69.4.9 problem 54

Internal problem ID [17998]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 4. Equations with variables separable and equations reducible to them. Exercises page 38
Problem number : 54
Date solved : Thursday, October 02, 2025 at 02:32:46 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=a^{x +y} \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 22
ode:=diff(y(x),x) = a^(x+y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\ln \left (-\frac {1}{c_1 \ln \left (a \right )+a^{x}}\right )}{\ln \left (a \right )} \]
Mathematica. Time used: 3.577 (sec). Leaf size: 24
ode=D[y[x],x]==a^(x+y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\log \left (-a^x-c_1 \log (a)\right )}{\log (a)} \end{align*}
Sympy. Time used: 3.361 (sec). Leaf size: 144
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a**(x + y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \begin {cases} \frac {\log {\left (- C_{1} x - \frac {C_{1}}{\log {\left (a \right )}} \right )}}{\log {\left (a \right )}} & \text {for}\: C_{1} x \log {\left (a \right )} + C_{1} = 0 \wedge \log {\left (a \right )} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} \frac {\log {\left (- \frac {1}{a^{x} + \log {\left (a^{C_{1}} \right )}} \right )}}{\log {\left (a \right )}} & \text {for}\: \frac {\log {\left (a \right )}}{a^{x} + \log {\left (a^{C_{1}} \right )}} \neq 0 \wedge \log {\left (a \right )} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} C_{1} + \frac {e^{x \log {\left (a \right )}}}{\log {\left (a \right )}} & \text {for}\: \log {\left (a \right )} = 0 \wedge e^{C_{1} \log {\left (a \right )} + e^{x \log {\left (a \right )}}} \log {\left (a \right )} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} C_{1} + \frac {W\left (x e^{- C_{1} \log {\left (a \right )}} \log {\left (a \right )}\right )}{\log {\left (a \right )}} & \text {for}\: e^{C_{1} \log {\left (a \right )} + W\left (x e^{- C_{1} \log {\left (a \right )}} \log {\left (a \right )}\right )} \log {\left (a \right )} = 0 \wedge \log {\left (a \right )} = 0 \\\text {NaN} & \text {otherwise} \end {cases}\right ] \]