69.6.4 problem 128

Internal problem ID [18047]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 6. Linear equations of the first order. The Bernoulli equation. Exercises page 54
Problem number : 128
Date solved : Thursday, October 02, 2025 at 02:35:57 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }+2 y x&={\mathrm e}^{-x^{2}} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 14
ode:=diff(y(x),x)+2*x*y(x) = exp(-x^2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x +c_1 \right ) {\mathrm e}^{-x^{2}} \]
Mathematica. Time used: 0.035 (sec). Leaf size: 17
ode=D[y[x],x]+2*x*y[x]==Exp[-x^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x^2} (x+c_1) \end{align*}
Sympy. Time used: 0.139 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x) + Derivative(y(x), x) - exp(-x**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x\right ) e^{- x^{2}} \]