Internal
problem
ID
[18071]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
6.
Linear
equations
of
the
first
order.
The
Bernoulli
equation.
Exercises
page
54
Problem
number
:
161
Date
solved
:
Sunday, October 12, 2025 at 05:33:46 AM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=diff(y(x),x)-2*y(x)*exp(x) = 2*(y(x)*exp(x))^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-2*y[x]*Exp[x]==2*Sqrt[y[x]*Exp[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*sqrt(y(x)*exp(x)) - 2*y(x)*exp(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -2*sqrt(y(x)*exp(x)) - 2*y(x)*exp(x) + Derivative(y(x), x) cannot be solved by the lie group method