Internal
problem
ID
[18074]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
6.
Linear
equations
of
the
first
order.
The
Bernoulli
equation.
Exercises
page
54
Problem
number
:
164
Date
solved
:
Thursday, October 02, 2025 at 02:37:20 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
ode:=(x^2+y(x)^2+1)*diff(y(x),x)+x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2+y[x]^2+1)*D[y[x],x]+x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x) + (x**2 + y(x)**2 + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)