Internal
problem
ID
[18081]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
7,
Total
differential
equations.
The
integrating
factor.
Exercises
page
61
Problem
number
:
175
Date
solved
:
Thursday, October 02, 2025 at 02:37:44 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
ode:=x*(2*x^2+y(x)^2)+y(x)*(x^2+2*y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*(2*x^2+y[x]^2)+y[x]*(x^2+2*y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(2*x**2 + y(x)**2) + (x**2 + 2*y(x)**2)*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)