69.7.9 problem 184

Internal problem ID [18089]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 7, Total differential equations. The integrating factor. Exercises page 61
Problem number : 184
Date solved : Thursday, October 02, 2025 at 02:40:16 PM
CAS classification : [_exact]

\begin{align*} \sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.044 (sec). Leaf size: 21
ode:=sin(y(x))+y(x)*sin(x)+1/x+(x*cos(y(x))-cos(x)+1/y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ -\cos \left (x \right ) y+\sin \left (y\right ) x +\ln \left (x \right )+\ln \left (y\right )+c_1 = 0 \]
Mathematica. Time used: 0.242 (sec). Leaf size: 66
ode=( Sin[y[x]]+y[x]*Sin[x]+1/x )+( x*Cos[y[x]]-Cos[x]+1/y[x] )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x\left (\sin (y(x))+\sin (K[1]) y(x)+\frac {1}{K[1]}\right )dK[1]+\int _1^{y(x)}\left (-\cos (x)+x \cos (K[2])-\int _1^x(\cos (K[2])+\sin (K[1]))dK[1]+\frac {1}{K[2]}\right )dK[2]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x*cos(y(x)) - cos(x) + 1/y(x))*Derivative(y(x), x) + y(x)*sin(x) + sin(y(x)) + 1/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out