Internal
problem
ID
[18091]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
7,
Total
differential
equations.
The
integrating
factor.
Exercises
page
61
Problem
number
:
186
Date
solved
:
Thursday, October 02, 2025 at 02:41:41 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
With initial conditions
ode:=2/y(x)^3*x+(y(x)^2-3*x^2)/y(x)^4*diff(y(x),x) = 0; ic:=[y(1) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=( 2*x/y[x]^3)+( (y[x]^2-3*x^2)/y[x]^4 )*D[y[x],x]==0; ic={y[1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x/y(x)**3 + (-3*x**2 + y(x)**2)*Derivative(y(x), x)/y(x)**4,0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)
Timed Out