69.7.15 problem 190

Internal problem ID [18095]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 7, Total differential equations. The integrating factor. Exercises page 61
Problem number : 190
Date solved : Thursday, October 02, 2025 at 02:42:00 PM
CAS classification : [_linear]

\begin{align*} x^{2}+y-x y^{\prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 9
ode:=x^2+y(x)-x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (x +c_1 \right ) x \]
Mathematica. Time used: 0.016 (sec). Leaf size: 11
ode=( x^2+y[x])-x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x (x+c_1) \end{align*}
Sympy. Time used: 0.134 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 - x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} + x\right ) \]