Internal
problem
ID
[18098]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
7,
Total
differential
equations.
The
integrating
factor.
Exercises
page
61
Problem
number
:
193
Date
solved
:
Thursday, October 02, 2025 at 02:42:05 PM
CAS
classification
:
[_Bernoulli]
ode:=x^4*ln(x)-2*x*y(x)^3+3*x^2*y(x)^2*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( x^4*Log[x]-2*x*y[x]^3)+(3*x^2*y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*log(x) + 3*x**2*y(x)**2*Derivative(y(x), x) - 2*x*y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)