69.8.4 problem 202

Internal problem ID [18107]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 8. First order not solved for the derivative. Exercises page 67
Problem number : 202
Date solved : Thursday, October 02, 2025 at 02:42:24 PM
CAS classification : [_separable]

\begin{align*} {y^{\prime }}^{2} x^{2}+3 x y y^{\prime }+2 y^{2}&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=x^2*diff(y(x),x)^2+3*x*y(x)*diff(y(x),x)+2*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {c_1}{x} \\ y &= \frac {c_1}{x^{2}} \\ \end{align*}
Mathematica. Time used: 0.026 (sec). Leaf size: 26
ode=x^2*D[y[x],x]^2+3*x*y[x]*D[y[x],x]+2*y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{x^2}\\ y(x)&\to \frac {c_1}{x}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.105 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x)**2 + 3*x*y(x)*Derivative(y(x), x) + 2*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {C_{1}}{x^{2}}, \ y{\left (x \right )} = \frac {C_{1}}{x}\right ] \]