Internal
problem
ID
[18184]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
12.
Miscellaneous
problems.
Exercises
page
93
Problem
number
:
305
Date
solved
:
Thursday, October 02, 2025 at 03:08:12 PM
CAS
classification
:
[_Bernoulli]
With initial conditions
ode:=x*diff(y(x),x)+y(x) = y(x)^2*ln(x); ic:=[y(1) = 1/2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x*D[y[x],x]+y[x]==y[x]^2*Log[x]; ic={y[1]==1/2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - y(x)**2*log(x) + y(x),0) ics = {y(1): 1/2} dsolve(ode,func=y(x),ics=ics)