69.12.33 problem 307
Internal
problem
ID
[18186]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
12.
Miscellaneous
problems.
Exercises
page
93
Problem
number
:
307
Date
solved
:
Thursday, October 02, 2025 at 03:08:17 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
\begin{align*} y^{\prime }&=\sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \end{align*}
✓ Maple. Time used: 0.005 (sec). Leaf size: 71
ode:=diff(y(x),x) = ((9*y(x)^2-6*y(x)+2)/(x^2-2*x+5))^(1/2);
dsolve(ode,y(x), singsol=all);
\[
-\frac {\sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}}\, \sqrt {x^{2}-2 x +5}\, \operatorname {arcsinh}\left (\frac {x}{2}-\frac {1}{2}\right )}{\sqrt {9 y^{2}-6 y+2}}+\frac {\operatorname {arcsinh}\left (3 y-1\right )}{3}+c_1 = 0
\]
✓ Mathematica. Time used: 6.97 (sec). Leaf size: 160
ode=D[y[x],x]==Sqrt[ (9*y[x]^2-6*y[x]+2)/ (x^2-2*x+5) ];
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {1}{96} \left (e^{3 c_1} \left (x^3+\left (\sqrt {x^2-2 x+5}-3\right ) x^2-2 \left (\sqrt {x^2-2 x+5}-3\right ) x+2 \left (\sqrt {x^2-2 x+5}-2\right )\right )-64 e^{-3 c_1} \left (-x^3+\left (\sqrt {x^2-2 x+5}+3\right ) x^2-2 \left (\sqrt {x^2-2 x+5}+3\right ) x+2 \left (\sqrt {x^2-2 x+5}+2\right )\right )+32\right )\\ y(x)&\to \frac {1}{3}-\frac {i}{3}\\ y(x)&\to \frac {1}{3}+\frac {i}{3} \end{align*}
✓ Sympy. Time used: 2.179 (sec). Leaf size: 122
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-sqrt((9*y(x)**2 - 6*y(x) + 2)/(x**2 - 2*x + 5)) + Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\begin {cases} \frac {y{\left (x \right )}}{\sqrt {9 y^{2}{\left (x \right )} - 6 y{\left (x \right )} + 2}} & \text {for}\: \left |{y{\left (x \right )}}\right | < 1 \\\frac {{G_{2, 2}^{1, 1}\left (\begin {matrix} 0 & 1 \\0 & -1 \end {matrix} \middle | {y{\left (x \right )}} \right )} y{\left (x \right )}}{\sqrt {9 y^{2}{\left (x \right )} - 6 y{\left (x \right )} + 2}} + \frac {{G_{2, 2}^{0, 2}\left (\begin {matrix} 0, 1 & \\ & -1, 0 \end {matrix} \middle | {y{\left (x \right )}} \right )} y{\left (x \right )}}{\sqrt {9 y^{2}{\left (x \right )} - 6 y{\left (x \right )} + 2}} & \text {otherwise} \end {cases} - \frac {\int \sqrt {\frac {9 y^{2}{\left (x \right )} - 6 y{\left (x \right )} + 2}{x^{2} - 2 x + 5}}\, dx}{\sqrt {9 y^{2}{\left (x \right )} - 6 y{\left (x \right )} + 2}} = C_{1}
\]