69.12.39 problem 313

Internal problem ID [18192]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 12. Miscellaneous problems. Exercises page 93
Problem number : 313
Date solved : Thursday, October 02, 2025 at 03:08:49 PM
CAS classification : [_rational, _dAlembert]

\begin{align*} y^{\prime }+{y^{\prime }}^{2} x -y&=0 \end{align*}
Maple. Time used: 0.035 (sec). Leaf size: 59
ode:=diff(y(x),x)+diff(y(x),x)^2*x-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = 2 \,{\mathrm e}^{\operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} x +2 \,{\mathrm e}^{\textit {\_Z}} x +\textit {\_Z} +c_1 -{\mathrm e}^{\textit {\_Z}}-x \right )} x +\operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} x +2 \,{\mathrm e}^{\textit {\_Z}} x +\textit {\_Z} +c_1 -{\mathrm e}^{\textit {\_Z}}-x \right )+c_1 -x \]
Mathematica. Time used: 0.509 (sec). Leaf size: 46
ode=D[y[x],x]+x*D[y[x],x]^2-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left \{x=\frac {\log (K[1])-K[1]}{(K[1]-1)^2}+\frac {c_1}{(K[1]-1)^2},y(x)=x K[1]^2+K[1]\right \},\{y(x),K[1]\}\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 - y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt(4*x*y(x) + 1) - 1)/(2*x) cannot be solved by the factorable group method