Internal
problem
ID
[18213]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
14.
Differential
equations
admitting
of
depression
of
their
order.
Exercises
page
107
Problem
number
:
338
Date
solved
:
Thursday, October 02, 2025 at 03:09:11 PM
CAS
classification
:
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]
With initial conditions
ode:=2*diff(diff(y(x),x),x) = diff(y(x),x)/x+x^2/diff(y(x),x); ic:=[y(1) = 1/5*2^(1/2), D(y)(1) = 1/2*2^(1/2)]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=2*D[y[x],{x,2}]==D[y[x],x]/x+x^2/D[y[x],x]; ic={y[1]==Sqrt[2]/5,Derivative[1][y][1]==Sqrt[2]/2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2/Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) - Derivative(y(x), x)/x,0) ics = {y(1): sqrt(2)/5, Subs(Derivative(y(x), x), x, 1): sqrt(2)/2} dsolve(ode,func=y(x),ics=ics)