69.14.33 problem 359

Internal problem ID [18234]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 14. Differential equations admitting of depression of their order. Exercises page 107
Problem number : 359
Date solved : Thursday, October 02, 2025 at 03:09:38 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{3} y^{\prime \prime }&=-1 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=1 \\ y^{\prime }\left (1\right )&=0 \\ \end{align*}
Maple
ode:=y(x)^3*diff(diff(y(x),x),x) = -1; 
ic:=[y(1) = 1, D(y)(1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.036 (sec). Leaf size: 15
ode=y[x]^3*D[y[x],{x,2}]==-1; 
ic={y[1]==1,Derivative[1][y][1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sqrt {-((x-2) x)} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)**3*Derivative(y(x), (x, 2)) + 1,0) 
ics = {y(1): 1, Subs(Derivative(y(x), x), x, 1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out