69.15.3 problem 434

Internal problem ID [18241]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.2 Homogeneous differential equations with constant coefficients. Exercises page 121
Problem number : 434
Date solved : Thursday, October 02, 2025 at 03:09:45 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=2 \\ y^{\prime \prime }\left (0\right )&=3 \\ \end{align*}
Maple. Time used: 0.043 (sec). Leaf size: 10
ode:=diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+3*diff(y(x),x)-y(x) = 0; 
ic:=[y(0) = 1, D(y)(0) = 2, (D@@2)(y)(0) = 3]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (1+x \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 12
ode=D[y[x],{x,3}]-3*D[y[x],{x,2}]+3*D[y[x],x]-y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==2,Derivative[2][y][0] ==3}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x (x+1) \end{align*}
Sympy. Time used: 0.111 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + 3*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 2, Subs(Derivative(y(x), (x, 2)), x, 0): 3} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (x + 1\right ) e^{x} \]