69.16.71 problem 544

Internal problem ID [18331]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Trial and error method. Exercises page 132
Problem number : 544
Date solved : Thursday, October 02, 2025 at 03:10:32 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=x^{2} \sin \left (x \right ) \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 33
ode:=diff(diff(y(x),x),x)+y(x) = x^2*sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (-2 x^{3}+12 c_1 +3 x \right ) \cos \left (x \right )}{12}+\frac {\sin \left (x \right ) \left (x^{2}+4 c_2 -1\right )}{4} \]
Mathematica. Time used: 0.056 (sec). Leaf size: 58
ode=D[y[x],{x,2}]+y[x]==x^2*Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos (x) \int _1^x-K[1]^2 \sin ^2(K[1])dK[1]+\sin (x) \int _1^x\cos (K[2]) K[2]^2 \sin (K[2])dK[2]+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.086 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*sin(x) + y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + \frac {x^{2}}{4}\right ) \sin {\left (x \right )} + \left (C_{2} - \frac {x^{3}}{6} + \frac {x}{4}\right ) \cos {\left (x \right )} \]