Internal
problem
ID
[18354]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Superposition
principle.
Exercises
page
137
Problem
number
:
568
Date
solved
:
Thursday, October 02, 2025 at 03:10:48 PM
CAS
classification
:
[[_high_order, _missing_y]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+4*diff(diff(diff(y(x),x),x),x) = exp(x)+3*sin(2*x)+1; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+4*D[y[x],{x,3}]==Exp[x]+3*Sin[2*x]+1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-exp(x) - 3*sin(2*x) + 4*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)