Internal
problem
ID
[18364]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Superposition
principle.
Exercises
page
137
Problem
number
:
578
Date
solved
:
Thursday, October 02, 2025 at 03:10:56 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+5*y(x) = exp(x)*(1-2*sin(x)^2)+10*x+1; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],x]+5*y[x]==Exp[x]*(1-2*Sin[x]^2)+10*x+1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-10*x - (1 - 2*sin(x)**2)*exp(x) + 5*y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)