Internal
problem
ID
[18377]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Initial
value
problem.
Exercises
page
140
Problem
number
:
591
Date
solved
:
Thursday, October 02, 2025 at 03:11:07 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)-6*diff(y(x),x)+9*y(x) = 9*x^2-12*x+2; ic:=[y(0) = 1, D(y)(0) = 3]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]-6*D[y[x],x]+9*y[x]==9*x^2-12*x+2; ic={y[0]==1,Derivative[1][y][0] ==3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-9*x**2 + 12*x + 9*y(x) - 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 2,0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 3} dsolve(ode,func=y(x),ics=ics)