Internal
problem
ID
[18389]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Initial
value
problem.
Exercises
page
140
Problem
number
:
603
Date
solved
:
Thursday, October 02, 2025 at 03:11:17 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+2*y(x) = 4*exp(x)*cos(x); ic:=[y(Pi) = Pi*exp(Pi), D(y)(Pi) = exp(Pi)]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],x]+2*y[x]==4*Exp[x]*Cos[x]; ic={y[Pi]==Pi*Exp[Pi],Derivative[1][y][Pi]==Exp[Pi]}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*y(x) - 4*exp(x)*cos(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(pi): pi*exp(pi), Subs(Derivative(y(x), x), x, pi): exp(pi)} dsolve(ode,func=y(x),ics=ics)