Internal
problem
ID
[18403]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Initial
value
problem.
Exercises
page
140
Problem
number
:
617
Date
solved
:
Thursday, October 02, 2025 at 03:11:28 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = exp(-x)*(9*x^2+5*x-12); ic:=[y(infinity) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==Exp[-x]*(9*x^2+5*x-12); ic={y[Infinity]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
{}
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-9*x**2 - 5*x + 12)*exp(-x) + 4*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(oo): 0} dsolve(ode,func=y(x),ics=ics)
ValueError : Couldnt solve for initial conditions