Internal
problem
ID
[18425]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
639
Date
solved
:
Thursday, October 02, 2025 at 03:11:48 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=x^2*(ln(x)-1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(Log[x]-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(log(x) - 1)*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*(log(x) - 1)*Derivative(y(x), (x, 2)) + y(x))/x cannot be solved by the factorable group method