Internal
problem
ID
[18429]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
643
Date
solved
:
Thursday, October 02, 2025 at 03:11:49 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
ode:=x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)-3*y(x) = 5*x^4; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-x*D[y[x],x]-3*y[x]==5*x^4; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-5*x**4 + x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) - 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)