2.3.16 problem 17

Internal problem ID [692]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 1.4. Separable equations. Page 43
Problem number : 17
Date solved : Tuesday, September 30, 2025 at 04:06:13 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=1+x +y+x y \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=diff(y(x),x) = 1+x+y(x)+x*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -1+{\mathrm e}^{\frac {x \left (x +2\right )}{2}} c_1 \]
Mathematica. Time used: 0.019 (sec). Leaf size: 25
ode=D[y[x],x] == 1+x+y[x]+x*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -1+c_1 e^{\frac {1}{2} x (x+2)}\\ y(x)&\to -1 \end{align*}
Sympy. Time used: 0.209 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) - x - y(x) + Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{x \left (\frac {x}{2} + 1\right )} - 1 \]