Internal
problem
ID
[18438]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
656
Date
solved
:
Thursday, October 02, 2025 at 03:11:54 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+y(x) = 1/(sin(x)^5*cos(x))^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==1/Sqrt[Sin[x]^5*Cos[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) + Derivative(y(x), (x, 2)) - 1/sqrt(sin(x)**5*cos(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out