Internal
problem
ID
[18450]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
668
Date
solved
:
Friday, October 03, 2025 at 07:32:31 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=4*x*diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = (x+6)/x^2; ic:=[y(infinity) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=4*x*D[y[x],{x,2}]+2*D[y[x],x]+y[x]==(6+x)/x^2; ic={y[Infinity]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
{}
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), (x, 2)) + y(x) + 2*Derivative(y(x), x) - (x + 6)/x**2,0) ics = {y(oo): 0} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**2*(4*x*Derivative(y(x), (x, 2)) + y(x)) + x + 6)/(2*x**2) cannot be solved by the factorable group method