69.22.7 problem 712

Internal problem ID [18473]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 17. Boundary value problems. Exercises page 163
Problem number : 712
Date solved : Thursday, October 02, 2025 at 03:13:57 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (1\right )&=1 \\ \end{align*}
Maple. Time used: 0.096 (sec). Leaf size: 9
ode:=diff(diff(y(x),x),x)-y(x) = 0; 
ic:=[y(0) = 0, D(y)(1) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \operatorname {sech}\left (1\right ) \sinh \left (x \right ) \]
Mathematica. Time used: 0.02 (sec). Leaf size: 27
ode=D[y[x],{x,2}]-y[x]==0; 
ic={y[0]==0,Derivative[1][y][1]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{1-x} \left (e^{2 x}-1\right )}{1+e^2} \end{align*}
Sympy. Time used: 0.037 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 1): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {e e^{x}}{1 + e^{2}} - \frac {e e^{- x}}{1 + e^{2}} \]