69.22.11 problem 716

Internal problem ID [18477]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 17. Boundary value problems. Exercises page 163
Problem number : 716
Date solved : Thursday, October 02, 2025 at 03:14:06 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y&=1 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (\pi \right )&=0 \\ \end{align*}
Maple. Time used: 0.032 (sec). Leaf size: 10
ode:=diff(diff(y(x),x),x)+y(x) = 1; 
ic:=[y(0) = 0, D(y)(Pi) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 1-\cos \left (x \right ) \]
Mathematica. Time used: 0.008 (sec). Leaf size: 11
ode=D[y[x],{x,2}]+y[x]==1; 
ic={y[0]==0,Derivative[1][y][Pi]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 1-\cos (x) \end{align*}
Sympy. Time used: 0.037 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), (x, 2)) - 1,0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, pi): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 1 - \cos {\left (x \right )} \]